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Transition metal-catalyzed [m+n+o] carbocyclization reactions
provide powerful methods for the construction of complex poly-
cyclic systems that are generally not accessible through classical
pericyclic reactions.1 Although theintermolecular metal-catalyzed
[2+2+2] carbocyclization reaction of carbon and heteroatom
tethered 1,6-enynes with symmetrical 1,2-disubstituted alkynes has
been described, a significant challenge with this process is the ability
to regioselectively incorporate unsymmetrical 1,2-disubstituted
alkynes.2-6 Furthermore, despite the myriad of metal-catalyzed
carbocyclization reactions, the enantioselective version of the metal-
catalyzed [2+2+2] carbocyclization of a 1,6-enyne has not been
described. In light of these significant challenges, we sought to
develop the combined regio- and enantioselective metal-catalyzed
[2+2+2] carbocyclization reaction with unsymmetrical 1,2-disub-
stituted alkynes and thereby provide a new paradigm for this type
of transformation. Herein, we now describe the regio- and enan-
tioselective rhodium-catalyzed [2+2+2] carbocyclization of carbon-
and heteroatom-tethered 1,6-enynes1 with unsymmetrical 1,2-
disubstituted alkynes to afford the corresponding bicyclohexadienes
2/3 in excellent yield (eq 1).

Preliminary studies focused on the development of the regio-
and enantioselective version of the rhodium-catalyzed [2+2+2]
carbocyclization using the 1,6-enyne1a as outlined in Table 1.
Treatment of1awith excess methyl phenylpropiolate and the chiral
complex derived from AgOTf-modified [RhCl(COD)]2 with (S)-
BINAP in benzene at 60°C, furnished the bicyclohexadienes2/3
in 27% yield as a 2:1 mixture of regioisomers (entry 1).7,8 Although
the overall efficiency and regioselectivity were not particularly
encouraging, the major isomer2a was obtained with high enantio-
selectivity (86% ee). Previous studies demonstrated that the overall
efficiency could be improved dramatically by simply adjusting the
nature of the solvent and/or counterion.5c In light of this fact, we
probed the effect of coordinating solvents and silver salts with
progressively weaker coordinating counterions (entries 2-5).
Gratifyingly, the ethereal solvent tetrahydrofuran in combination
with the tetrafluoroborate counterion proved optimal in terms of
efficiency (entry 5), since these conditions completely suppressed
the undesired homo-coupling of enyne1a. Additional optimization
focused on the nature of the chiral phosphine ligand to improve
and potentially understand the factors that control regioselectivity.
Interestingly, switching to (S)-Xyl-BINAP led to significantly
improved regioselectivity (entry 5 vs 6). Hence, the more sterically
hindered bisphosphine can more effectively discriminate the termini
of methyl phenylpropiolate (Ph vs CO2Me). The moreπ-acidic (S)-
DIFLUORPHOS ligand, which has a narrower dihedral angle than
(S)-Xyl-BINAP, furnished the product with diminished regio-

selection, albeit with higher enantioselectivity (entry 7).9 In accord
with this observation, the dipyridyl-phosphines CTH-(S)-P-PHOS
and (S)-Xyl-P-PHOS ligands, which possesses a dihedral angle
similar to that of (S)-DIFLUORPHOS (see Figure 1), afforded
excellent enantioselectivity, in which (S)-Xyl-P-PHOS provided the
optimum ligand in terms of regioselectivity (entry 9).10 This trend
is analogous with the improvement observed for the switch from
the (S)-BINAP to (S)-Xyl-BINAP ligand (entry 5 vs 6), presumably
due to similar reasoning.

Table 2 summarizes the application of the optimized reaction
conditions (Table 1, entry 9) to the various carbon- and heteroatom-
tethered 1,6-enynes using an array of methylpara-substituted
arylpropiolates. Interestingly, the carbocyclization reaction is highly
enantioselective regardless of the nature of the enyne tether and/or
the aryl substituent, whereas the yield and/or regioselectivity are
influenced by these parameters. For example, although all the

Table 1. Optimization of Intermolecular Rhodium-Catalyzed
[2+2+2] Carbocyclization Reactiona

entry solvent additive ligand (L*)
yield
(%)b

rs
(2a:3a)c

ee of 2a
(%)d,e

1 PhH AgOTf (S)-BINAP 27 2:1 86
2 MeCN “ “ 0 - -
3 THF “ “ 68 3:1 92
4 “ AgSbF6 “ 82 3:1 89
5 “ AgBF4 “ 95 3:1 92
6 “ “ ( S)-Xyl-BINAP 93 8:1 88
7 “ “ ( S)-DIFLUORPHOS 73 4:1 97
8 “ “ ( S)-P-PHOS 75 5:1 97
9 THF AgBF4 (S)-Xyl-P-PHOS 98 10:1 97

a All reactions were carried out on a 0.25 mmol reaction scale utilizing
the chiral complex derived from 5 mol % of [RhCl(COD)]2 and 12 mol %
of the bidentate phosphine ligand, furthermodifiedwith 20 mol % of silver
salt and methyl phenylpropiolate (3 equiv) under an atmosphere of argon.11

b Isolated yields.c Regioselectivity was determined by 400 MHz1H NMR
on the crude reaction mixtures.d Enantiomeric excess of the major
regioisomer2a was determined by chiral HPLC analysis.e The regiose-
lectivity and absolute configuration of(S)-2a were established by NOESY
and X-ray crystallography, respectively.

Figure 1. Chiral ligands used in the optimization studies.
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enynes undergo regioselective carbocyclizations, the nature of the
tether has a profound influence on the level of regiocontrol (O.
NTs > C(CO2Me)2). Similarly, the overall efficiency and regio-
selectivity can be directly related to the electronic nature of the
aryl substituents. This trend is particularly prominent with carbon
tethers (entries 7-10), whereas regioselectivity and efficiency are
somewhat affected in the nitrogen (entries 2-5) and oxygen tethers
(entries 12-15), respectively.OVerall, this work now proVides
access to preViously unknown enantiomerically enriched bicyclo-
hexadienes that are useful synthons for target-directed synthesis.

To further demonstrate the scope of this transformation, we
elected to examine an alternative electron-withdrawing group within
the alkyne. Treatment of the 1,6-enyne1a under the optimized
reaction conditions with 4-phenyl-3-butyn-2-one furnished the
bicyclohexadienes4a/5a (R′ ) H) in 86% yield, with g19:1
regioselectivity and 95%ee for 4a (eq 2).12 Additionally, we

envisioned the application of this methodology to a substituted 1,6-
enyne1a′ (R′ ) Me) would facilitate the enantioselective introduc-
tion of a quaternary carbon stereogenic center, which would be a
particularly attractive feature of this methodology.13 Gratifyingly,
treatment of1a′ under the optimized carbocyclization conditions
with 4-phenyl-3-butyn-2-one furnished the quaternary substituted
bicyclic azacycles4a′/5a′ (R′ ) Me) in 84% yield, with 10:1
regioselectivity andg99% ee for 4a′.12

In conclusion, we have developed the first regio- and enanti-
oselective crossedintermolecular rhodium-catalyzed [2+2+2]
carbocyclization of carbon- and heteroatom-tethered 1,6-enynes with
unsymmetrical 1,2-disubstituted alkynes. This study clearly delin-
eates the specific ligand requirements for obtaining excellent regio-
and enantioselectivity. Furthermore, the ability to utilize various
electron-withdrawing groups, and to introduce quaternary carbon
stereogenic centers, provides the level of versatility necessary for

its application to target-directed synthesis. Additional studies on
the development and application of this novel methodology to the
total synthesis of natural products are currently underway.14
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Table 2. Scope of the Regio- and Enantioselective
Rhodium-Catalyzed [2+2+2] Carbocyclization Reaction (eq 1; R )
p-FG-C6H4, EWG ) CO2Me)a

entry
1,6-enyne 1

X )
alkyne
FG )

yield
(%)b rs (2:3)c

ee of 2
(%)d

1 TsN a H 98 a 10:1 97
2 “ “ OMe 84 b 14:1 97
3 “ “ Me 95 c 11:1 97
4 “ “ F 87 d 10:1 97
5 “ “ CF3 86 e 10:1 98
6 C(CO2Me)2 b H 88 f 9:1 g99
7 “ “ OMe 85 g 10:1 98
8 “ “ Me 80 h 9:1 95
9 “ “ F 74 i 7:1 98
10 “ “ CF3 65 j 5:1 98
11 O c H 86 k g19:1 g99
12 “ “ OMe 95 l g19:1 98
13 “ “ Me 87 m g19:1 98
14 “ “ F 75 n 17:1 g99
15 “ “ CF3 72 o 17:1 97

a All reactions were carried out on a 0.25 mmol reaction scale.b Isolated
yields.11 c Ratio of regioisomers was determined by 400 MHz1H NMR
on the crude reaction mixtures.d Enantiomeric excess of the major
regioisomer was determined by chiral HPLC analysis.12
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